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According to S. N. Bernstein [1, p. 90J, for any n ~ 0, the error in best
uniform approximation of (1 - x) -Ion [-~, D by polynomials of degree
~ n having integral coefficients and a leading coefficient 1 is 2 -n and is
realized by L7~o Xi. In this note we establish among other things that
(1-X)-1 can be approximated on [-~, D by polynomials Pn_l(x) of
degree n-1 (n~1) with an error 2[Tn(2)J-I<4(2+}3)-n. Here Tn(x)
denotes the Chebyshev polynomial of the first kind of degree n. Further we
establish that the error obtained in approximating (1 - x) -Ion [ -~, D by
polynomials of degree ~n-1 is never smaller than i[Tn(2)J- 1

• Thus the
error of best approximation is Cn[Tn(2)J-I with a bounded Cn" It is a
special case of a more general result we obtain. We also note that for any
constant a~2, (l-X)-I can be approximated on [-1/a,1/aJ by
polynomials of degree n, having non-negative, nonincreasing coefficients
only with an error <a(an+ I -1)-I, but never better than (an+ I -1)-I.
We also show for n ~ 0, that the smallest maximal error in a uniform
approximation of 1 - x on [0, 1J by ratios of polynomials of degree ~ n,
having nonnegative, non-increasing coefficients is (n + 2) -I.

THEOREM 1.

II
n+ 1 II 1(1-x)- ,<--

(n + 2) L~'=O Xi L1'O,1] "" n + 2'
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n=O, 1,2,.... (1 )
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Proof For 0:::;;x:::;;(n+2)-I/(n+1),

n . 1 n+I
(I-x) L xl=l-xn+l~I =_._,

i=O n+2 n+2

0:::;; (1-x)- n+1 1-x
n

+
1
-[(n+1)/(n+2)]

(n + 2) L7~0 Xl L7~0 Xi

(n + 2) -1 _ x n + 1 1
= . :::;;--.

L7~0 Xl n + 2

For (n+2)-I/n+l <x:::;; 1,

and as g'(x»O in [0, co], g(x):::;;g(1) = 1/(n+2), proving (1).
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THEOREM 2. Let P(x) and Q(x) = L;=o bjx
j
, bo> 0, be real polynomials

of degree :::;; n (n ~ 0) having nonnegative, nonincreasing coefficients. Then

Proof Set

II
P(x) II 11-x--- >---
Q(x) LU>.IJ;;'- n +2'

(2 )
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Thus,
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Theorems 1 and 2 imply that for n = 0, 1, 2, ... , the smallest value of the left­
hand side of (2) subject to the above conditions on P(x) and Q(x) is
1/(n+2) and that (1) holds with equality sign.

THEOREM 3. For any constant a~ 2 and x E [-lla, lla], we have for
n=0,1,2,oo.,

Proof

ax - (axy+ 1 = ax( 1- (axn < a-I,

and hence the result.

Remarks. (1) Actually a ~ 1+n(n + 1) - (n + 1 lin, will be enough for our
theorem.

(2) Let P(x) and Q(x) satisfy the assumptions of Theorem 2 and
a ~ 2. Then by adopting the technique used in the proof of Theorem 2, we
obtain

II
I P(x) II 1

I-x - Q(x) Lro[-lla,lla]~an+1_1'

THEOREM 4. Let a> 1 and n > 1. Then there exists a polynomial Pn _ 1(x)
of degree n - 1 such that

II
1 II a---Pn_1(x) :( .

I-x Lro[-lla,lla] (a-I) Tn(a)

Proof Set
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If XE [-l/a, l/aJ, then
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THEOREM 5. Let a> 1, n? 1, and let Pn-I(x) be a polynomial of degree
~n-1. Then

II
1 II a---Pn [(x) ?.

I-x - L"'[-I/a,l/a] (a+l) Tn(a)

We need the following [1, p.68J

LEMMA. If a polynomial Pn(x) of degree ~n, n? 0, satisfies the
inequality IPn(x)1 ~ L on [c, d], then at any real point x outside [c, d] we
have

\
(
2X-C-d)!IPn(x)1 ~L Tn d-c .

Proof of Theorem 5.
Let Pn-1(x) deviate least from (1- X)-I on [ -1/a, l/a] in the uniform

norm. Set

II 1 II---P I(X) =e
I-x n- L"'[-I/a.l/a] ,

P(x) = 1- (1- x) Pn-1(x).

From (4) and (3) we obtain

a+l
max IP(x)1 ~--e.

[-I/a, I(a] a

By the lemma,

proving our theorem.

(3)

(4)
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